EM210

NÁVOD PRO VERZE BEZ OVĚŘENÍ MID

(s kódem X na konci typového označení)

MANUÁL K MONTÁŽI A NASTAVENÍ

Kód originálu: 8021724

ENIKA.CZ s.r.o., Vlkov 33, 509 01 Nová Paka Czech Republic www.enika.cz

OBSAH:

1	Vlas	Vlastnosti		
	1.1	Elektrické parametry	. 3	
	1.2	Parametry prostředí	. 3	
	1.3	Parametry výstupů	. 3	
	1.4	LED indikace	. 4	
	1.5	Obecné vlastnosti	. 4	
	1.6	Čištění	. 4	
	1.7	Servis a záruka	. 4	
	1.8	Upozornění	. 4	
	1.9	Postup demontáže z DIN lišty	. 5	
	1.10	Popis typového označení elektroměru	. 5	
	1.11	Popis částí elektroměru	. 5	
	1.12	Popis displeje	. 6	
	1.13	Přestavba konfigurace panel / DIN	. 6	
	1.14	Indikace chyby měření	. 6	
	1.15	Hardwarový zámek nastavení	. 6	
2	Sché	mata zapojení	. 7	
	2.1	Zapojení ARON, pouze pro modely AV5/AV6	. 7	
	2.2	Zapojení pro všechny modely	. 7	
3	Ovlá	dání a nastavení přístroje	10	
	3.1	Režimy přístroje	10	
	3.2	Ovládání přístroje v režimu prohlížení údajů	10	
	3.3	Ovládání přístroje v režimu nastavování parametrů	10	
	3.4	Příklad změny parametru	11	
	3.5	Přehledová tabulka zobrazovaných veličin podle nastavení aplikace	11	
	3.6	Režim měření – zobrazení podle nastaveného parametru "APPLiC"	12	
	3.7	Informační režim	13	
	3.7.1	Informace společné pro všechny verze	13	
	3.7.2	Informace pouze pro verzi AV5 a AV6	13	
	3.7.3	Informace pouze pro verzi MV5 a MV6	13	
	3.8	Režim nastavování parametrů	14	
	3.8.1	Funkce společné pro všechny verze	15	
	3.8.2	Funkce pouze pro verzi AV5 a AV6	15	
	3.8.3	Funkce pouze pro verzi MV5 a MV6	15	

Třífázový elektroměr s analýzou parametrů sítě pro nepřímé měření (5 A nebo 0,333 V) s výstupem RS485 Modbus nebo pulzním výstupem S0.

Elektroměr měří činnou a jalovou energii, podle nastavení režimu sčítá nebo rozlišuje odebranou energii od dodané energie. Zobrazuje také hlavní parametry elektrické sítě, včetně zkreslení (THD), počítá proud nulou a provozní hodiny. Proud měří pomocí externích proudových transformátorů (senzorů). Napětí může měřit přímo, nebo pomocí napěťových transformátorů. Může být vybaven volitelným výstupem: pulzní výstup S0 nebo RS485 Modbus. K dispozici jsou verze přístroje s oběma výstupy současně. Montážní šířka jsou čtyři DIN moduly. Má odnímatelný LCD displej, který lze umístit u obou stran základny, a tak změnit montáž z DIN lišty na panelovou. Přístroj lze provozovat i bez vloženého displeje.

1 Vlastnosti

111 Eleneriene paramete	5
Napájení	z měřících vstupů napětí, 40-480 VAC (45-65 Hz)
Spotřeba	$\leq 1 \text{ W}, \leq 2 \text{ VA}$
Základní rozsah (In)	5 A (pro AV5, AV6) 0,333 V (pro MV5, MV6)
Maximální proud (trvalý)	1,2 In
Startovací proud	0,01 A
Pracovní napětí	AV5: 230 VLN, 400 VLL AC
	AV6: 120 VLN, 230 VLL AC
Rozsah napětí	AV5: 160-240 VLN, 277-415 VLL AC
_	AV6: 57,7-133 VLN, 100-230 VLL AC
Frekvence sítě	45-65 Hz
Třída přesnosti	Činná energie: Třída 1 (EN62053-21)
-	Jalová energie: Třída 2 (EN62053-23)

1.1 Elektrické parametry

1.2 Parametry prostředí

Provozní teplota	Od -25 do +55 °C/ od -13 do +131 °F
Skladovací teplota	Od -30 do +70 °C / od -22 do +158 °F

1.3 Parametry výstupů

Pulzní výstup	Programovatelný od 0,01 do 9,99 kWh/pulz.
Délka pulzu	TOFF ≥ 120ms podle EN62052-31
-	TON volitelně 30 nebo 100 ms podle EN62053-31
Port RS485 Modbus	Modbus RTU protokol

POZNÁMKA: pro další informace o datové komunikaci vyhledejte odpovídající dokumenty dostupné na našich webových stránkách **www.enika.cz**.

1.4 LED indikace

Váha pulzu LED se automaticky mění podle na nastavení konstant proudových (CT) a napěťových (VT) transformátorů u verzí AV. Případně podle součinu nastaveného rozsahu měření (primární proud v A) a konstanty VT u verzí MV.

inereni (primarin proue v					
Váha (kWh/pulz)	CT x VT (AV)	primární proud x VT (MV)			
0,001	< 7	< 35,0			
0,01	≥ 7,0 < 70	≥ 35,0 < 350,0			
0,1	$\geq 70 < 700$	≥ 350,0 < 3500,0			
1	≥ 700,0	≥ 3500,0			
Maximální frekvence	16 Hz				
Barva	červená				

1.5 Obecné vlastnosti

Svorky	2,4 x 3,5 mm	utahovací moment 0,4 Nm / 0,8 Nm
Krytí	čelní strana: IP40	svorky: IP20

1.6 Čištění

Pro čištění displeje použijte lehce navlhčenou látku. Nepoužívejte abrazivní prostředky a rozpouštědla.

1.7 Servis a záruka

V případě výskytu závady nebo pro informace o záruce, kontaktujte prosím Vašeho prodejce.

1.8 Upozornění

Živé části pod napětím. Nebezpečí srdeční zástavy, popálenin a jiných zranění. Před instalací elektroměru odpojte napájení a zátěž. Elektroměr smí být instalován pouze kvalifikovanou osobou. Přístroj je určen pouze pro použití v budovách nebo v rozvodnách s odpovídajícími parametry prostředí a krytím.

Tento návod je nedílnou součástí výrobku. Postupujte podle něj za všech situací spojených s instalací a používáním. Návod ponechte v blízkosti přístroje, na čistém místě a v dobrém stavu.

44,8

[

4

1.9 Postup demontáže z DIN lišty

Věnujte zvýšenou opatrnost při demontáži přístroje z DIN lišty, aby nedošlo k poškození plastových držáků. Postupujte podle obrázku. Nejprve přístroj odlehčete směrem nahoru, až se uvolní horní držák. Lehce odklopte horní držák od DIN lišty a pak posuňte přístroj dolů, aby se uvolnil dolní držák. Nadměrné odklonění přístroje může vést k poškození držáku.

1.10 Popis typového označení elektroměru

EM21072D	AV5	3	Χ	0	Χ	Χ
Typová řada AV5:		3:	X:	O :	X:	X:
	230/400, 5A	3 fáze (4	vlastní napájení	výstup	nepoužito	nepoužito
	AV6:	vodiče /	40-480Vac	pulzy S0	S:	
	120/230, 5A	3 vodiče)	(VL2-VL3)		RS485 port	
	MV5:	2 fáze (3				
	230/400, 0,333V	vodiče)				
	MV6:	1 fáze (2				
	120/230, 0,333V	vodiče)				

1.11 Popis částí elektroměru

1. Tlačítka Slouží k nastavení parametrů a přepínání zobrazených údajů.

2. LED indikátor Blikání odpovídá množství právě odebírané energie.

3. Displej LCD displej s grafickými indikátory.

 Připojovací svorky Šroubovací svorkovnice pro připojení vstupů a výstupů.

5. Zelený LED indikátor Napájení zapnuto (svítí), probíhá komunikace (bliká).

Poznámka: V balení naleznete přiloženy krytky svorkovnic a držáky pro fixaci přístroje v otvoru panelu. V případě, že budete instalovat kryty svorek, nezapomeňte je zajistit vhodnou plombou.

1.12 Popis displeje

А	Měřené veličiny			
В	Oblasti s následujícími symboly			
	Indikace opačného sledu fází			
\triangle	Napětí fáze-fáze (L1-2, L2-3, L3-1)			
5	Hodnota vztažená k celému rozvodnému systému			

1.13 Přestavba konfigurace panel / DIN

1.14 Indikace chyby měření

Pokud měřená veličina překročí povolené rozsahy přístroje, objeví se:

- EEE blikající: měřená veličina je mimo limity
- EEE svítící: měření vychází z veličiny, která je mimo limity

Poznámka: při indikaci chyby jsou hodnoty činné a jalové energie zobrazeny, ale nemění se.

1.15 Hardwarový zámek nastavení

Po vyjmutí displeje z těla elektroměru je na jeho zadní straně přístupný přepínač pro zablokování přístupu do nastavení některých parametrů. Přepínač se ovládá malým šroubovákem a změna se provede přetočením z jedné krajní polohy do druhé, podle poblíž umístěných symbolů.

2 Schémata zapojení

2.1 Zapojení ARON, pouze pro modely AV5/AV6

2.2 Zapojení pro všechny modely

enika

3 Ovládání a nastavení přístroje

3.1 Režimy přístroje

Příkaz

Horní tlačítko obr. 1

Dolní tlačítko obr. 2

Dolní tlačítko obr. 2

Horní tlačítko obr. 1

funkci End)

Dolní tlačítko dlouze obr. 3

3.2 Ovládání přístroje v režimu prohlížení údajů

Operace

Přejít na další zobrazení v měř. režimu Přejít do informačního režimu Přejít na další zobrazení v info. režimu Opustit informační režim Přejít do nastavovacího režimu Opustit nastavovací režim

obr. 1

obr. 2

obr. 3

Dolní tlačítko dlouze obr. 3 (pouze při zobrazené

3.3 Ovládání přístroje v režimu nastavování parametrů

Operace

Vstup do změny hodnoty Přepnutí mezi režimem zvyšování hodnoty (zobrazeno C) a snižování hodnoty (zobrazeno -C) Zvýšení hodnoty (zobrazeno C) Snížení hodnoty (zobrazeno -C) Potvrzení nastavené hodnoty Příkaz

Dolní tlačítko obr. 2

Dolní tlačítko obr. 2 Horní tlačítko obr. 1 Horní tlačítko obr. 1 Dolní tlačítko dlouze obr. 3

10

POZNÁMKA: V případě, že bude přístroj ponechán v klidu po dobu 120 s, bude automaticky zobrazena výchozí stránka v režimu měření.

3.4 Příklad změny parametru

nastavení aplikace

Příklad: Postup změny Ut rAt z hodnoty 10 na 11 (s chybným překročením na 13 a návratem zpět).

POZNÁMKA: Výchozí zobrazená hodnota je ta, která byla zadána při posledním nastavení. Nastavení jsou uložena do paměti až do potvrzení nové hodnoty. Během změny hodnoty je vždy zobrazen znak C nebo -C. Pokud uplyne 120 s, kdy bude přístroj v klidu a nebude nová hodnota uložena, se zobrazí výchozí zobrazení daného parametru (**Ut rAt** v tomto příkladu) a znak C / -C zmizí. Po uplynutí dalších 120 s, kdy bude přístroj v klidu, se nastavovací režim ukončí a zobrazí se výchozí zobrazení režimu měření.

3.5 Přehledová tabulka zobrazovaných veličin podle

No nastavení aplikace třetí veličina první veličina druhá veličina poznámka (druhý řádek) (první řádek vlevo) (první řádek vpravo) В С D Е Α pořadí fází Indikace chybného pořadí fází x х x x (výstražný trojúhelník) se zobrazí vždy bez ohladu na aktuální informace celkem kWh Wcelkem 1 х х х х х х "NEG" 1b celkem kWh (-) Exportovaná činná energie + 2 celkem kvarh kvar celkem + + т + + 3 PF průměr Hz Zobrazení C. -C. L nebo -L x х х х x odpovídá aktuálnímu kvadrantu 4 PF L1 PF L2 PF L3 Zobrazení C, -C, L nebo -L х x x х odpovídá aktuálnímu kvadrantu 5 A L1 AL2 A L3 x х x х 6 V L1-2 V L2-3 V L3-1 x х x 7 VL1 VL2 VL3 x х 8 "thd" "L1' THD VL1-N х х 9 "L2" THD VL2-N "thd" х х х х х THD VL3-N 10 "thd" "L3' х х х х х 11 "thd" "L1" THD A L1 х x x x × "L2" THD A L2 12 "thd x х х х x 13 "thd" "L3" THD A L3 х х х х х 14 "L1" THD VL1-2 "thd" x x x х x "L2" THD VL2-3 15 "thd" x х х x x 16 "thd" "L3' THD VL3-1 х х х х х 17 "A n" An х х x х х 18 provozní hodiny h х х х х (při kWh+) 19 provozní hodiny hх

x = zobrazuje se na displeji

(při kWh-)

+ = je měřena a evidována pouze kvarh+ (spotřeba)

T = výroba a spotřeba kvarh se sčítá na společném počítadle

11

3.6 Režim měření – zobrazení podle nastaveného parametru "APPLiC"

01: Stav čítače kWh a okamžitý celkový činný příkon kW sys. Zobrazeno při APPLiC = A - B - C - D - E - F.

02: Stav čítače kvarh a okamžitý celkový jalový příkon kvar sys.

Zobrazeno při APPLiC = $B - C - D - E - F^*$.

Poznámka*: při nastavení aplikace F jsou oba směry toku kvarh přičítány na stejný čítač (není rozlišen směr). Ve všech ostatních aplikacích je načítán pouze směr odběru kvarh+ (spotřeba).

03: Celkový účiník **PF sys** a frekvence sítě **Hz**. Zobrazeno při APPLiC = B - C - D - E - F.

04: Účiník pro jednotlivé fáze **PF**. Zobrazeno při APPLiC = C - D - E - F.

05: Proud pro jednotlivé fáze **A**. Zobrazeno při APPLiC = C - D - E - F.

06: Napětí mezi jednotlivými fázemi **V** LL. Zobrazeno při APPLiC = C - D - E - F.

07: Napětí mezi jednotlivými fázemi a nulou V LN. Zobrazeno při APPLiC = C - D - E - F.

Dále se mohou při nastavení APPLiC = C - D - E - F zobrazovat ještě tyto parametry:

- napěťové zkreslení THD VLL, THD VLN
- proudové zkreslení THD A
- proud nulou An
- provozní hodiny **h**

08: Stav čítače **kWh**- (výroba). Indikováno nápisem **nEG** na dolním řádku dipleje. Zobrazeno při APPLiC = E.

Dále při nastavení APPLiC = E se ještě zobrazuje čítač provozních hodin h-, který je aktivní při měření kWh-.

Pozn.: Elektroměr měří ještě další veličiny, které jsou ale dostupné pouze pomocí komunikace RS485. Jsou to:

VLN sys, VLL sys, VA sys, VA L1, VA L2, VA L3, var L1, var L2, var L3, W1 L1, W L2, W L3 a indikace chybného zapojení měření proudu / napětí.

3.7 Informační režim

3.7.1 Informace společné pro všechny verze

číslo	kód	popis	popis příkladu na obrázku
01	y.xxx r.XX	Rok výroby.	y. 2017 (vyrobeno 2017)
		Verze firmware.	r. A0 (firmware A0)
02	LEd	Blikání LED (kWh na jeden pulz).	kWh 0,001 (1 pulz LED = 0,001 kWh)
03	SyS	Nastavený typ rozvodné sítě a zapojení.	SYS 3P.n (zapojení 3F síť nulovým
			vodičem – viz schémata zapojení)
05	Ut rAt.	Převodní konstanta napěťových traf.	10 (napětí sekundáru x 10)
06	PuLSE	Pulzní výstup na svorkách (kWh/pulz).	0,10 (1 pulz = 0,1 kWh)
07	Add	Sériová adresa komunikace.	2 (z rozsahu 1-247)
08	PArity	Parita.	no (bez parity)
09	bAud	Rychost komunikace.	115 kbps
10	bStop	Stop bit.	1
11	Sn	Sekundární adresa komunikace.	1234567

3.7.2 Informace pouze pro verzi AV5 a AV6

číslo	kód	popis	popis příkladu na obrázku
04	Ct rAt.	Převodní konstanta proudových traf.	1,0 (proud sekundáru x 1)

3.7.3 Informace pouze pro verzi MV5 a MV6

číslo	kód	popis	popis příkladu na obrázku	
04	SEnSOR	Typ proudového senzoru (Ct nebo RoG).	Ct	
	Ct Prin	Měřící proudový rozsah senzoru.	90	

3.8 Režim nastavování parametrů

enika®

ENIKA.CZ s.r.o. www.enika.cz

14

<i>c</i> 1		
funkce	popis	hodnoty *
PASS	Zadejte platné heslo	Platné heslo
CnGPASS	Změna hesla	Nové heslo - 3 číslice (000 -999)
APPLiC	Volba aplikace	A / B / C / D / E / F
SYS	Nastavení typu rozvodné sítě a	3Pn : třífázový systém s nulovým vodičem
	zapojení. Musí souhlasit	3P : třífázový systém bez nulového vodiče
	s vybraným schématem	3P1 : třífázový vyvážený systém bez nebo s nulovým vodičem
	zapojení.	2P: dvoufázový systém
		1P: jednofázový systém
Ut rAt.	Nastavení převodní konstanty	<u>1,0</u> -999
	napěťových traf.	
PuLSE	Nastavení pulzního výstupu.	<u>0,01</u> -9,99 kWh/pulz
ton	Volba délky pulzu v msec.	<u>30</u> -100
P.tESt	Simulace výkonu na pulzním	1-999 kW (testovací frekvence pulzů odpovídá nastavení
	výstupu (kW).	podle parametru PuLSE)
tESt	Spuštění testu pulzního	Test je aktivní pouze pokud není opuštěno toto menu.
	výstupu.	Pouze pro aplikace C-D-E-F.
Add	Nastavení sériové adresy.	<u>1</u> -247
bAud	Nastavení rychlosti kom.	<u>9,6</u> / 19,2 / 38,4 / 57,6 / 115,2
PAritY	Volba parity.	No / Even (bez parity / sudá)
bSTOP	Nastavení stop bitů.	<u>1</u> -2
tHd	Povolení měření THD.	On – povoleno / Off - zakázáno
EnE rES	Provedení resetu všech čítačů.	No: neprovádět reset
		Yes: provést reset
End	Opuštění nastavování.	Návrat na úvodní stránku měření

3.8.1 Funkce společné pro všechny verze

3.8.2 Funkce pouze pro verzi AV5 a AV6

funkce	popis	hodnoty *
Ct rAt.	Nastavení převodní konstanty	<u>1,0</u> -999
	proudových traf.	
	Pozor! Maximální součin Ct a	
	Ut konstanty je 1187.	

3.8.3 Funkce pouze pro verzi MV5 a MV6

funkce	popis	hodnoty *
SEnSOr	Volba typu proudového	<u>Ct</u> – proudový transformátor
	senzoru.	roG – Rogowského cívka
Ct Prin	Nastavení proudového	<u>10</u> -9990 pro Ct
	rozsahu. Pozor! Maximální	<u>1,00k</u> / 2,00k / 4,00k pro roG
	součin primárního proudu a Ut	
	konstanty je 220 000.	

Poznámka *: přednastavené hodnoty z výroby jsou podtrženy.

